Back to Search Start Over

Empagliflozin prevents neointima formation by impairing smooth muscle cell proliferation and accelerating endothelial regeneration

Authors :
Jochen Dutzmann
Lena Marie Bode
Katrin Kalies
Laura Korte
Kai Knöpp
Frederik Julius Kloss
Mirja Sirisko
Claudia Pilowski
Susanne Koch
Heiko Schenk
Jan-Marcus Daniel
Johann Bauersachs
Daniel G. Sedding
Source :
Frontiers in Cardiovascular Medicine, Vol 9 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

BackgroundEmpagliflozin, an inhibitor of the sodium glucose co-transporter 2 (SGLT2) and developed as an anti-diabetic agent exerts additional beneficial effects on heart failure outcomes. However, the effect of empagliflozin on vascular cell function and vascular remodeling processes remains largely elusive.Methods/ResultsImmunocytochemistry and immunoblotting revealed SGLT2 to be expressed in human smooth muscle (SMC) and endothelial cells (EC) as well as in murine femoral arteries. In vitro, empagliflozin reduced serum-induced proliferation and migration of human diabetic and non-diabetic SMCs in a dose-dependent manner. In contrast, empagliflozin significantly increased the cell count and migration capacity of human diabetic ECs, but not of human non-diabetic ECs. In vivo, application of empagliflozin resulted in a reduced number of proliferating neointimal cells in response to femoral artery wire-injury in C57BL/6J mice and prevented neointima formation. Comparable effects were observed in a streptozocin-induced diabetic model of apolipoprotein E–/– mice. Conclusive to the in vitro-results, re-endothelialization was not significantly affected in C57BL/6 mice, but improved in diabetic mice after treatment with empagliflozin assessed by Evan’s Blue staining 3 days after electric denudation of the carotid artery. Ribonucleic acid (RNA) sequencing (RNA-seq) of human SMCs identified the vasoactive peptide apelin to be decisively regulated in response to empagliflozin treatment. Recombinant apelin mimicked the in vitro-effects of empagliflozin in ECs and SMCs.ConclusionEmpagliflozin significantly reduces serum-induced proliferation and migration of SMCs in vitro and prevents neointima formation in vivo, while augmenting EC proliferation in vitro and re-endothelialization in vivo after vascular injury. These data document the functional impact of empagliflozin on vascular human SMCs and ECs and vascular remodeling in mice for the first time.

Details

Language :
English
ISSN :
2297055X
Volume :
9
Database :
Directory of Open Access Journals
Journal :
Frontiers in Cardiovascular Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.f4d6d3aa1744c36a133ba41013c2556
Document Type :
article
Full Text :
https://doi.org/10.3389/fcvm.2022.956041