Back to Search Start Over

High Milling Time Influence on the Phase Stability and Electrical Properties of Fe50Mn35Sn15 Heusler Alloy Obtained by Mechanical Alloying

Authors :
Florin Popa
Traian Florin Marinca
Niculina Argentina Sechel
Dan Ioan Frunză
Ionel Chicinaș
Source :
Materials, Vol 17, Iss 17, p 4355 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Fe50Mn35Sn15 Heusler alloy, obtained by mechanical alloying, was subjected to larger milling times in the range of 30–50 h to study the phase stability and morphology. X-ray diffraction studies have shown that the milled samples crystallise in a disordered A2 structure. The A2 structure was found to be stable in the milling range studied, contrary to the computation studies performed on this composition. Using Rietveld refinements, the lattice parameter, mean crystallite size, and lattice strain were computed. The nature of the obtained phases by milling was found to be nanocrystalline with values below 50 nm. A linear increase rate of 0.00713 (h−1) was computed for lattice strain as the milling time increased. As the milling time increases, the lattice parameter of the cubic Heusler was found to have a decreasing behaviour, reaching 2.9517 Å at 50 h of milling. The morphological and elemental distribution—characterised by scanning electron microscopy and energy-dispersive X-ray spectroscopy—evidenced Mn and Sn phase clustering. As the milling time increased, the morphology of the sample was found to change. The Mn and Sn cluster size was quantified by elemental line profile. Electrical resistivity evolution with milling time was analysed, showing a peak for 40 h of milling time.

Details

Language :
English
ISSN :
19961944
Volume :
17
Issue :
17
Database :
Directory of Open Access Journals
Journal :
Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.f436ff997f34072bd36a74c2385fb2e
Document Type :
article
Full Text :
https://doi.org/10.3390/ma17174355