Back to Search Start Over

403 Epithelial hypoxia maintains colonization resistance against Candida albicans

Authors :
Derek J. Bays
Hannah P. Savage
Connor Tiffany
Mariela A. F. Gonzalez
Eli. J. Bejarano
Henry Nguyen
Hugo L. P. Masson
Thaynara P. Carvalho
Renato L. Santos
Andrew Tritt
Suzanne M. Noble
George R. Thompson
Andreas J. Bäumler
Source :
Journal of Clinical and Translational Science, Vol 8, Pp 119-120 (2024)
Publication Year :
2024
Publisher :
Cambridge University Press, 2024.

Abstract

OBJECTIVES/GOALS: Antibiotic treatment sets the stage for intestinal domination by Candida albicanswhich is necessary for development of invasive disease, but the resources driving this bloom remain poorly defined. We sought to determine these factors in order to design novel prophylaxis strategies for reducing gastrointestinal (GI) colonization. METHODS/STUDY POPULATION: We initially developed a generalizable framework, termed metabolic footprinting to determine the metabolites C. albicanspreferentially uses in the mouse GI tract. After identifying the metabolites C. albicansutilizes, we usedin vitro growth assays in the presence and absence of oxygen to validate out metabolomics findings. We next determined if a probiotic E. coli that utilizes oxygen would reduce C. albicanscolonization compared to a mutant E. coli that could not respire oxygen. Finding that oxygen was a necessary resource, we utilized germ-free mice to determine if Clostridiaspp. known to reduce GI oxygen would prevent C. albicanscolonization. Lastly, we sought to see if 5-aminosalicylic acid (5-ASA) could prevent C. albicanscolonization. RESULTS/ANTICIPATED RESULTS: We found that C. albicans preferentially utilizes simple carbohydrates including fructo-oligosaccharides (e.g., 1-kestose), disaccharides (e.g., β-gentiobiose), and alcoholic sugars (e.g., sorbitol) and is able to grow in vitro on minimal media supplemented with either of these nutrients. However, in the hypoxic environment that is found in the “healthy” colon, C. albicans cannot utilize these nutrients. We next found that pre-colonization in a mouse model with a probiotic E. coli significantly reduced C. albicanscolonization, but the mutant E. coli had no effect on colonization. We next showed that Clostridia supplementation restored GI hypoxia and reduced C. albicanscolonization. Remarkably, we found that 5-ASA significantly reduced GI colonization of C. albicans. DISCUSSION/SIGNIFICANCE: We have shown that C. albicans requires oxygen to colonize the GI tract. Importantly, we found that 5-ASA can prevent an antibiotic mediated bloom of C. albicans by restoring GI hypoxia, which warrants additional studies to determine if 5-ASA can be used as an adjunctive prophylactic treatment in high risk patients.

Subjects

Subjects :
Medicine

Details

Language :
English
ISSN :
20598661
Volume :
8
Database :
Directory of Open Access Journals
Journal :
Journal of Clinical and Translational Science
Publication Type :
Academic Journal
Accession number :
edsdoj.f42c016a9b9e44799468b8b12fad880a
Document Type :
article
Full Text :
https://doi.org/10.1017/cts.2024.350