Back to Search Start Over

Phase-separated stretchable conductive nanocomposite to reduce contact resistance of skin electronics

Authors :
Hyunjin Lee
Hye Jin Kim
Yoonsoo Shin
Dae-Hyeong Kim
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Skin electronics, facilitating a high-quality interface between external devices and human skin for recording physiological and/or electrophysiological signals as well as delivering external electrical and/or mechanical energy into the human body, has shown significant progress. However, achieving mechanically conformal contact and electrically low contact resistance at the device-skin interface remains challenging. Here, we propose a material strategy to potentially address such an issue by using phase separation of silver nanowires and silver nanoparticles (Ag NWs and Ag NPs) within a stretchable conductive nanocomposite (NC). This phase-separated NC ensures low contact resistance and high conductivity, which are key requirements in skin electronics, while maintaining excellent mechanical contact with the skin. To achieve phase separation, we hydrophobically treated the surfaces of Ag NWs and Ag NPs. Then, as the NC solidified, the solvent contained in the NC was slowly evaporated to sufficiently precipitate Ag NPs within the NC. As a result, the phase-separated NC exhibited high conductivity (~ 18,535 S cm−1), excellent stretchability (~ 80%), and low contact resistance on both the top and bottom NC surfaces (average ~ 0.132 Ω). The phase-separated NC has enabled implementation of high performance skin-mounted devices, including strain sensors, electrophysiological sensors, and a wearable heater.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.f41beec427a8404092f6550357fbea08
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-51980-1