Back to Search Start Over

Chlorocholine chloride exposure induced spermatogenic dysfunction via iron overload caused by AhR/PERK axis-dependent ferritinophagy activation

Authors :
Wanqian Guo
Chenping Kang
Xiaoxia Wang
Haoran Zhang
Lilan Yuan
Xuetao Wei
Qianqian Xiao
Weidong Hao
Source :
Ecotoxicology and Environmental Safety, Vol 274, Iss , Pp 116193- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.

Details

Language :
English
ISSN :
01476513
Volume :
274
Issue :
116193-
Database :
Directory of Open Access Journals
Journal :
Ecotoxicology and Environmental Safety
Publication Type :
Academic Journal
Accession number :
edsdoj.f3ea1c57778d42bfb4d903b987789a16
Document Type :
article
Full Text :
https://doi.org/10.1016/j.ecoenv.2024.116193