Back to Search
Start Over
Heat transfer analysis of a hybrid nanofluid flow on a rotating disk considering thermal radiation effects
Heat transfer analysis of a hybrid nanofluid flow on a rotating disk considering thermal radiation effects
- Source :
- Case Studies in Thermal Engineering, Vol 49, Iss , Pp 103131- (2023)
- Publication Year :
- 2023
- Publisher :
- Elsevier, 2023.
-
Abstract
- This study investigates heat transfer in a hybrid nanofluid that flows due to a rotating disk. The nanofluid contains copper and dioxide nanoparticles in water and is affected by a constant magnetic field. The study accounts for heat generation/absorption and thermal radiation and solves the governing equations using similarity transformations and the Shooting Method. The research reveals that the higher nanoparticle concentration in a fluid result in increased radial and azimuthal velocities due to improved convective heat transfer. This leads to higher fluid velocity and lower local skin friction coefficient. Heat generation/absorption and thermal radiation have a strong influence on the heat transfer process. Higher nanoparticle concentration, variable thermal conductivity parameter, and radiation parameter cause an increase in the temperature of the hybrid nanofluid. The local Nusselt number increases with an increase in the variable thermal conductivity parameter but decreases with nanoparticle concentration while increases with the thermal radiation parameter. Results from a special case analysis, which excluded certain parameters, closely agree with previous studies, confirming the validity of the solution. These findings can be useful in understanding heat transfer in similar scenarios, especially in energy engineering and thermal management.
Details
- Language :
- English
- ISSN :
- 2214157X
- Volume :
- 49
- Issue :
- 103131-
- Database :
- Directory of Open Access Journals
- Journal :
- Case Studies in Thermal Engineering
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.f3b931c2ac24495a3b2ee6a177fe1b3
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.csite.2023.103131