Back to Search Start Over

A Deep Echo State Network-Based Novel Signal Processing Approach for Underwater Wireless Optical Communication System with PAM and OFDM Signals

Authors :
Kexin Wang
Yihong Gao
Mauro Dragone
Yvan Petillot
Xu Wang
Source :
Photonics, Vol 10, Iss 7, p 763 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Underwater wireless optical communication (UWOC) plays key role in the underwater wireless sensor networks (UWSNs), which have been widely employed for both scientific and commercial applications. UWOC offers high transmission data rates, high security, and low latency communication between nodes in UWSNs. However, significant absorption and scattering loss in underwater channels, due to ocean water conditions, can introduce highly non-linear distortion in the received signals, which can severely deteriorate communication quality. Consequently, addressing the challenge of processing UWOC signals with low optical signal-to-noise ratios (OSNRs) is critical for UWOC systems. Increasing the transmitting optical power and investigating more advanced signal processing technologies to recover transmitted symbols are two primary approaches to improve system tolerance in noisy UWOC signal channels. In this paper, we propose and demonstrate the application of deep echo state networks (DeepESNs) for channel equalization in high-speed UWOC systems to enhance system performance with both PAM and QPSK-OFDM modulations. Our experimental results demonstrate the effectiveness of DeepESNs in UWOC systems, achieving error-free underwater transmission over 40.5 m with data rates up to 167 Mbps. Moreover, we compare the performance of DeepESNs to conventional echo state networks and provide suggestions on the configuration of a DeepESN for UWOC signals.

Details

Language :
English
ISSN :
23046732
Volume :
10
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Photonics
Publication Type :
Academic Journal
Accession number :
edsdoj.f35c0a134444ba181ad6f28904d8d41
Document Type :
article
Full Text :
https://doi.org/10.3390/photonics10070763