Back to Search Start Over

Cannabigerol Reduces Acute and Chronic Hypernociception in Animals Exposed to Prenatal Hypoxia-Ischemia

Authors :
Bismarck Rezende
Kethely Lima Marques
Filipe Eloi Alves de Carvalho
Vitória Macario de Simas Gonçalves
Barbara Conceição Costa Azeredo de Oliveira
Gabriela Guedes Nascimento
Yure Bazilio dos Santos
Fernanda Antunes
Penha Cristina Barradas
Fabrícia Lima Fontes-Dantas
Guilherme Carneiro Montes
Source :
Scientia Pharmaceutica, Vol 92, Iss 3, p 53 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Cannabigerol (CBG), a phytocannabinoid, has shown promise in pain management. Previous studies by our research group identified an increase in pain sensitivity as a consequence of prenatal hypoxia-ischemia (HI) in an animal model. This study aimed to investigate the efficacy of CBG in acute and chronic hyperalgesia induced by prenatal HI. A pharmacological screening was first conducted using hot plate and open-field tests to evaluate the antinociceptive and locomotor activities of animals administered with a 50 mg/kg oral dose of cannabis extract with a high CBG content. Prenatal HI was induced in pregnant rats, and the offspring were used to evaluate the acute antinociceptive effect of CBG in the formalin-induced peripheral pain model, while chronic antinociceptive effects were observed through spinal nerve ligation (SNL) surgery, a model used to induce neuropathic pain. Our results show that CBG exhibited an antinociceptive effect in the hot plate test without affecting the animals’ motor function in the open-field test. CBG significantly reduced formalin-induced reactivity in HI offspring during both the neurogenic and inflammatory phases. CBG treatment alleviated thermal and mechanical hypernociception induced by SNL. Biomolecular analysis revealed CBG’s ability to modulate expression, particularly reducing TNFα and Nav1.7 in HI male and female rats, respectively. These results highlight CBG as a potential antinociceptive agent in acute and chronic pain models, suggesting it as a promising therapeutic option without inducing motor impairment. Further research is needed to fully elucidate its mechanisms and clinical applications in pain management.

Details

Language :
English
ISSN :
22180532 and 00368709
Volume :
92
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Scientia Pharmaceutica
Publication Type :
Academic Journal
Accession number :
edsdoj.f32388873c45b79832fe899b14da69
Document Type :
article
Full Text :
https://doi.org/10.3390/scipharm92030053