Back to Search Start Over

mAb therapy controls CNS‐resident lyssavirus infection via a CD4 T cell‐dependent mechanism

Authors :
Kate E Mastraccio
Celeste Huaman
Si'Ana A Coggins
Caitlyn Clouse
Madeline Rader
Lianying Yan
Pratyusha Mandal
Imran Hussain
Anwar E Ahmed
Trung Ho
Austin Feasley
Bang K Vu
Ina L Smith
Wanda Markotter
Dawn L Weir
Eric D Laing
Christopher C Broder
Brian C Schaefer
Source :
EMBO Molecular Medicine, Vol 15, Iss 10, Pp n/a-n/a (2023)
Publication Year :
2023
Publisher :
Springer Nature, 2023.

Abstract

Abstract Infections with rabies virus (RABV) and related lyssaviruses are uniformly fatal once virus accesses the central nervous system (CNS) and causes disease signs. Current immunotherapies are thus focused on the early, pre‐symptomatic stage of disease, with the goal of peripheral neutralization of virus to prevent CNS infection. Here, we evaluated the therapeutic efficacy of F11, an anti‐lyssavirus human monoclonal antibody (mAb), on established lyssavirus infections. We show that a single dose of F11 limits viral load in the brain and reverses disease signs following infection with a lethal dose of lyssavirus, even when administered after initiation of robust virus replication in the CNS. Importantly, we found that F11‐dependent neutralization is not sufficient to protect animals from mortality, and a CD4 T cell‐dependent adaptive immune response is required for successful control of infection. F11 significantly changes the spectrum of leukocyte populations in the brain, and the FcRγ‐binding function of F11 contributes to therapeutic efficacy. Thus, mAb therapy can drive potent neutralization‐independent T cell‐mediated effects, even against an established CNS infection by a lethal neurotropic virus.

Details

Language :
English
ISSN :
17574684 and 17574676
Volume :
15
Issue :
10
Database :
Directory of Open Access Journals
Journal :
EMBO Molecular Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.f2f7561c73df4203a58b8d3978a4070c
Document Type :
article
Full Text :
https://doi.org/10.15252/emmm.202216394