Back to Search
Start Over
Achieving in-situ alloy-hardening core-shell structured carbonyl iron powders for magnetic abrasive finishing
- Source :
- Materials & Design, Vol 212, Iss , Pp 110198- (2021)
- Publication Year :
- 2021
- Publisher :
- Elsevier, 2021.
-
Abstract
- The finishing accuracy and efficiency of magnetic abrasive finishing (MAF) are mainly depending on magnetic abrasive powders (MAPs). A new kind of core–shell structured carbonyl iron powders (CI-MAPs) with a hard Fe/Al intermetallic shell for magnetic abrasive finishing is successfully synthesized by in-situ alloy-hardening the surface of spherical carbonyl iron powders in this study. The feasibility of such an in-situ alloy-hardening strategy is theoretically designed according to the Fe/Al intermetallic compound formation chemical reaction using the Gibbs free energy principle and the TG-DSC testing, and thus the experimental thermodynamics temperature and time ranges of such chemical reactions are proposed. Experimental results shown that a densely zigzag-like uniform alloy-hardening layer with a thickness of about 11 μm, which are composed of Fe3Al, FeAl, and Fe2Al5 intermetallic compounds, was in-situ chemically synthesized on the surface of the spherical carbonyl Fe powders. The achieved core–shell structured powder is performed to finishing a Zirconium tube experimentally, and the roughness (Ra) of the Zirconium tube is greatly improved from 0.361 μm to 0.085 μm by 3 MAF passes.
Details
- Language :
- English
- ISSN :
- 02641275
- Volume :
- 212
- Issue :
- 110198-
- Database :
- Directory of Open Access Journals
- Journal :
- Materials & Design
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.f2f525f719034096a1af6ad5c77db468
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.matdes.2021.110198