Back to Search Start Over

On a Conjecture about Degree Deviation Measure of Graphs

Authors :
Ali Ghalavand
Ali Reza Ashrafi
Source :
Transactions on Combinatorics, Vol 10, Iss 1, Pp 1-8 (2021)
Publication Year :
2021
Publisher :
University of Isfahan, 2021.

Abstract

Let $G$ be an $n-$vertex graph with $m$ vertices‎. ‎The degree deviation measure of $G$ is defined as‎ ‎$s(G)$ $=$ $\sum_{v\in V(G)}|deg_G(v)‎- ‎\frac{2m}{n}|,$ where $n$ and $m$ are the number of vertices and edges of $G$‎, ‎respectively‎. ‎The aim of this paper is to prove the Conjecture 4.2 of [J‎. ‎A‎. ‎de Oliveira‎, ‎C‎. ‎S‎. ‎Oliveira‎, ‎C‎. ‎Justel and N‎. ‎M‎. ‎Maia de Abreu‎, ‎Measures of irregularity of graphs‎, Pesq‎. ‎Oper.‎, ‎33 (2013) 383--398]‎. ‎The degree deviation measure of chemical graphs under some conditions on the cyclomatic number is also computed‎.

Details

Language :
English
ISSN :
22518657 and 22518665
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Transactions on Combinatorics
Publication Type :
Academic Journal
Accession number :
edsdoj.f2ee7ee548a436fa0cdc79d5f86683f
Document Type :
article
Full Text :
https://doi.org/10.22108/toc.2020.121737.1709