Back to Search Start Over

Medium-scale flexible integrated circuits based on 2D semiconductors

Authors :
Yalin Peng
Chenyang Cui
Lu Li
Yuchen Wang
Qinqin Wang
Jinpeng Tian
Zhiheng Huang
Biying Huang
Yangkun Zhang
Xiuzhen Li
Jian Tang
Yanbang Chu
Wei Yang
Dongxia Shi
Luojun Du
Na Li
Guangyu Zhang
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-8 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Two-dimensional (2D) semiconductors, combining remarkable electrical properties and mechanical flexibility, offer fascinating opportunities for flexible integrated circuits (ICs). Despite notable progress, so far the showcased 2D flexible ICs have been constrained to basic logic gates and ring oscillators with a maximum integration scale of a few thin film transistors (TFTs), creating a significant disparity in terms of circuit scale and functionality. Here, we demonstrate medium-scale flexible ICs integrating both combinational and sequential elements based on 2D molybdenum disulfide (MoS2). By co-optimization of the fabrication processes, flexible MoS2 TFTs with high device yield and homogeneity are implemented, as well as flexible NMOS inverters with robust rail-to-rail operation. Further, typical IC modules, such as NAND, XOR, half-adder and latch, are created on flexible substrates. Finally, a medium-scale flexible clock division module consisting of 112 MoS2 TFTs is demonstrated based on an edge-triggered Flip-Flop circuit. Our work scales up 2D flexible ICs to medium-scale, showing promising developments for various applications, including internet of everything, health monitoring and implantable electronics.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.f2e33841a1ac40c48339d915843c743e
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-55142-9