Back to Search Start Over

Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides.

Authors :
Paul J McMurdie
Sebastian F Behrens
Jochen A Müller
Jonathan Göke
Kirsti M Ritalahti
Ryan Wagner
Eugene Goltsman
Alla Lapidus
Susan Holmes
Frank E Löffler
Alfred M Spormann
Source :
PLoS Genetics, Vol 5, Iss 11, p e1000714 (2009)
Publication Year :
2009
Publisher :
Public Library of Science (PLoS), 2009.

Abstract

Vinyl chloride (VC) is a human carcinogen and widespread priority pollutant. Here we report the first, to our knowledge, complete genome sequences of microorganisms able to respire VC, Dehalococcoides sp. strains VS and BAV1. Notably, the respective VC reductase encoding genes, vcrAB and bvcAB, were found embedded in distinct genomic islands (GEIs) with different predicted integration sites, suggesting that these genes were acquired horizontally and independently by distinct mechanisms. A comparative analysis that included two previously sequenced Dehalococcoides genomes revealed a contextually conserved core that is interrupted by two high plasticity regions (HPRs) near the Ori. These HPRs contain the majority of GEIs and strain-specific genes identified in the four Dehalococcoides genomes, an elevated number of repeated elements including insertion sequences (IS), as well as 91 of 96 rdhAB, genes that putatively encode terminal reductases in organohalide respiration. Only three core rdhA orthologous groups were identified, and only one of these groups is supported by synteny. The low number of core rdhAB, contrasted with the high rdhAB numbers per genome (up to 36 in strain VS), as well as their colocalization with GEIs and other signatures for horizontal transfer, suggests that niche adaptation via organohalide respiration is a fundamental ecological strategy in Dehalococccoides. This adaptation has been exacted through multiple mechanisms of recombination that are mainly confined within HPRs of an otherwise remarkably stable, syntenic, streamlined genome among the smallest of any free-living microorganism.

Subjects

Subjects :
Genetics
QH426-470

Details

Language :
English
ISSN :
15537390 and 15537404
Volume :
5
Issue :
11
Database :
Directory of Open Access Journals
Journal :
PLoS Genetics
Publication Type :
Academic Journal
Accession number :
edsdoj.f2742d4993cc4a668aa8493b2ac1a52e
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pgen.1000714