Back to Search Start Over

Fursultiamine Prevents Drug-Induced Ototoxicity by Reducing Accumulation of Reactive Oxygen Species in Mouse Cochlea

Authors :
Ye-Ri Kim
Tae-Jun Kwon
Un-Kyung Kim
In-Kyu Lee
Kyu-Yup Lee
Jeong-In Baek
Source :
Antioxidants, Vol 10, Iss 10, p 1526 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Drug-induced hearing loss is a major type of acquired sensorineural hearing loss. Cisplatin and aminoglycoside antibiotics have been known to cause ototoxicity, and excessive accumulation of intracellular reactive oxygen species (ROS) are suggested as the common major pathology of cisplatin- and aminoglycoside antibiotics-induced ototoxicity. Fursultiamine, also called thiamine tetrahydrofurfuryl disulfide, is a thiamine disulfide derivative that may have antioxidant effects. To evaluate whether fursultiamine can prevent cisplatin- and kanamycin-induced ototoxicity, we investigated their preventive potential using mouse cochlear explant culture system. Immunofluorescence staining of mouse cochlear hair cells showed that fursultiamine pretreatment reduced cisplatin- and kanamycin-induced damage to both inner and outer hair cells. Fursultiamine attenuated mitochondrial ROS accumulation as evidenced by MitoSOX Red staining and restored mitochondrial membrane potential in a JC-1 assay. In addition, fursultiamine pretreatment reduced active caspase-3 and TUNEL signals after cisplatin or kanamycin treatment, indicating that fursultiamine decreased apoptotic hair cell death. This study is the first to show a protective effect of fursultiamine against cisplatin- and aminoglycoside antibiotics-induced ototoxicity. Our results suggest that fursultiamine could act as an antioxidant and anti-apoptotic agent against mitochondrial oxidative stress.in cochlear hair cells.

Details

Language :
English
ISSN :
20763921
Volume :
10
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Antioxidants
Publication Type :
Academic Journal
Accession number :
edsdoj.f2650db040cc4ed6a0637364de6b2d07
Document Type :
article
Full Text :
https://doi.org/10.3390/antiox10101526