Back to Search Start Over

An experimental study and axial tensile constitutive model of the toughness of PP-SACC for rapid repairs

Authors :
Wen Xie
Xuefeng Xu
Chunlei Xu
Feng Tian
Qiwen Mao
Helong Li
Lin Liu
Gongyi Qin
Source :
Frontiers in Built Environment, Vol 9 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

To improve the economic benefits of engineered cementitious composites and control the repair cycle, repair materials were designed, with the key components of the mixture being low-cost polypropylene (PP) fibers and fast-setting sulfoaluminate cement. The effects of water/binder ratio, fiber content, and aggregate particle size on the flowability, mechanical properties, and toughness of the polypropylene fiber-reinforced sulfoaluminate cementitious composite (PP-SACC) were explored. Based on experimentally measured axial tensile stress–strain curves, a constitutive model of PP-SACC was derived in terms of fiber content and water/binder ratio. Additionally, the correlation coefficients representing the relationships of the mixture indices with the tensile properties were explored based on revised gray relational analysis. Test results indicated that fiber content and water/binder ratio were the most important factors affecting the mechanical properties, toughness, and fluidity of the material; in contrast, the influence of aggregate size was slight. The PP-SACC mixture with an aggregate size of 75 µm, a water/binder ratio of 0.30, and a fiber content of 3.0% demonstrated an excellent degree of toughness and exhibited a flexural hardening phenomenon under bending load.

Details

Language :
English
ISSN :
22973362
Volume :
9
Database :
Directory of Open Access Journals
Journal :
Frontiers in Built Environment
Publication Type :
Academic Journal
Accession number :
edsdoj.f24182a73f448488d32fd8b10a6013d
Document Type :
article
Full Text :
https://doi.org/10.3389/fbuil.2023.1137569