Back to Search Start Over

Development and Thermophysical Profile of Cetyl Alcohol-in-Water Nanoemulsions for Thermal Management

Authors :
David Cabaleiro
Sonia Losada-Barreiro
Filippo Agresti
Carolina Hermida-Merino
Laura Fedele
Luis Lugo
Simona Barison
Manuel M. Piñeiro
Source :
Fluids, Vol 7, Iss 1, p 11 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

This study focuses on the preparation, thermophysical and rheological characterization of phase change material nanoemulsions as latent functionally thermal fluids. Aqueous dispersions with fine droplets of cetyl alcohol (with a melting temperature at ~321 K) were prepared by means of a solvent-assisted method, combining ultrasonication with non-ionic and anionic emulsifiers. Eicosyl alcohol (melting at ~337 K) and hydrophobic silica nanoparticles were tested as nucleating agents. Droplet size studies through time and after freeze–thaw cycles confirmed the good stability of formulated nanoemulsions. Phase change analyses proved the effectiveness of eicosyl alcohol to reduce subcooling to a few Kelvin. Although phase change material emulsions exhibited thermal conductivities much larger than bulk cetyl alcohol (at least 60% higher when droplets are solid), reductions in this property reached 15% when compared to water. Samples mainly showed desirable Newtonian behavior (or slight shear thinning viscosities) and modifications in density around melting transition were lower than 1.2%. In the case of phase change material nanoemulsions with 8 wt.% content of dispersed phase, enhancements in the energy storage capacity overcome 20% (considering an operational temperature interval of 10 K around solid–liquid phase change). Formulated dispersions also showed good thermal reliability throughout 200 solidification–melting cycles.

Details

Language :
English
ISSN :
23115521
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Fluids
Publication Type :
Academic Journal
Accession number :
edsdoj.f192c687049c4910ae6b3daa997792f8
Document Type :
article
Full Text :
https://doi.org/10.3390/fluids7010011