Back to Search Start Over

Deep Packet Inspection Model Based on Support Vector Machine for Anomaly Detection in Local Area Networks

Authors :
Margaret Moronke DOSUNMU
Femi Emmanuel Ayo
Lukman Adebayo OGUNDELE
Abass Ishola TAIWO
Timothy Olabisi OLATAYO
Source :
Iraqi Journal for Computers and Informatics, Vol 50, Iss 2, Pp 8-21 (2024)
Publication Year :
2024
Publisher :
University of Information Technology and Communications, 2024.

Abstract

Deep packet inspection is a network security solution that identifies and flags anomalous network traffic patterns in a local network environment. Traditional signature-based techniques for intrusion detection are limited in identifying different attacks or completely new kinds, which makes them unsuitable in some situations. In addition, most previous methods for anomaly detection have low detection rate and high false alarm. In this study, a deep packet inspection model based on support vector machine (SVM) for anomaly detection in local area networks was proposed. The proposed method combined the SelectKBest method and SVM for the categorization of anomaly in a local network environment. Results showed that the proposed method outperformed other related machine learning methods with accuracy, precision, recall, and F1-score of 94.81%, 94.03%, 94.13%, and 94.0799%, respectively. The accuracy result shows that most network traffic can be correctly identified by the SVM using the SelectKBest approach, with minimal false positives or negatives.

Details

Language :
Arabic, English
ISSN :
2313190X and 25204912
Volume :
50
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Iraqi Journal for Computers and Informatics
Publication Type :
Academic Journal
Accession number :
edsdoj.f17c6c4690404f7eb786eddfa5c32b53
Document Type :
article
Full Text :
https://doi.org/10.25195/ijci.v50i2.501