Back to Search Start Over

LIDAR-BASED LANE MARKING EXTRACTION THROUGH INTENSITY THRESHOLDING AND DEEP LEARNING APPROACHES: A PAVEMENT-BASED ASSESSMENT

Authors :
Y.-T. Cheng
A. Patel
D. Bullock
A. Habib
Source :
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLIII-B3-2020, Pp 507-514 (2020)
Publication Year :
2020
Publisher :
Copernicus Publications, 2020.

Abstract

With the rapid development of autonomous vehicles (AV) and high-definition (HD) maps, up-to-date lane marking information is necessary. Over the years, several lane marking extraction approaches have been proposed with many of them based on accurate and dense Light Detection and Ranging (LiDAR) point cloud data collected by mobile mapping systems (MMS). This study proposes a normalized intensity thresholding strategy and a deep learning strategy with automatically generated labels. The former extracts lane markings directly from LiDAR point clouds while the latter utilizes 2D intensity images generated from the LiDAR point cloud. Additionally, the proposed approaches are also compared with state-of-the-art strategies such as original intensity thresholding and a deep learning approach based on manually established labels. Finally, each strategy is evaluated in asphalt and concrete pavements separately to assess their sensitivity to the nature of pavement surface. The results show that the deep learning model trained with automatically generated labels performs the best in both asphalt and concrete pavement area with an F1-score of 84.9% and 85.1%. In asphalt pavement area, original intensity thresholding strategy shows a lane marking extraction performance comparable to the other strategies while in concrete pavement area, it is significantly poor with an F1-score of 65.1%. Between the proposed normalized intensity thresholding and deep learning model trained with manually labeled data, the former performs better in asphalt pavement area while the latter obtains better results in concrete pavements.

Details

Language :
English
ISSN :
16821750 and 21949034
Volume :
XLIII-B3-2020
Database :
Directory of Open Access Journals
Journal :
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.f17abf4f49ad41db8e4f95b8f4f1d8ff
Document Type :
article
Full Text :
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-507-2020