Back to Search Start Over

Design, Synthesis, Antibacterial, and Antifungal Evaluation of Phenylthiazole Derivatives Containing a 1,3,4-Thiadiazole Thione Moiety

Authors :
Guoqing Mao
Yao Tian
Jinchao Shi
Changzhou Liao
Weiwei Huang
Yiran Wu
Zhou Wen
Linhua Yu
Xiang Zhu
Junkai Li
Source :
Molecules, Vol 29, Iss 2, p 285 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

To effectively control the infection of plant pathogens, we designed and synthesized a series of phenylthiazole derivatives containing a 1,3,4-thiadiazole thione moiety and screened for their antibacterial potencies against Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, as well as their antifungal potencies against Sclerotinia sclerotiorum, Rhizoctonia solani, Magnaporthe oryzae and Colletotrichum gloeosporioides. The chemical structures of the target compounds were characterized by 1H NMR, 13C NMR and HRMS. The bioassay results revealed that all the tested compounds exhibited moderate-to-excellent antibacterial and antifungal activities against six plant pathogens. Especially, compound 5k possessed the most remarkable antibacterial activity against R. solanacearum (EC50 = 2.23 μg/mL), which was significantly superior to that of compound E1 (EC50 = 69.87 μg/mL) and the commercial agent Thiodiazole copper (EC50 = 52.01 μg/mL). Meanwhile, compound 5b displayed the most excellent antifungal activity against S. sclerotiorum (EC50 = 0.51 μg/mL), which was equivalent to that of the commercial fungicide Carbendazim (EC50 = 0.57 μg/mL). The preliminary structure-activity relationship (SAR) results suggested that introducing an electron-withdrawing group at the meta-position and ortho-position of the benzene ring could endow the final structure with remarkable antibacterial and antifungal activity, respectively. The current results indicated that these compounds were capable of serving as promising lead compounds.

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.f160491eb848429e8ec41f5aac595661
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules29020285