Back to Search Start Over

Molecular epidemiology of multidrug-resistant Acinetobacter baumannii isolates from a hospital in Nepal

Authors :
Masafumi Sakuma
Mari Tohya
Tomomi Hishinuma
Jeevan B. Sherchand
Teruo Kirikae
Tatsuya Tada
Source :
Journal of Global Antimicrobial Resistance, Vol 38, Iss , Pp 363-367 (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Objectives: The emergence of multidrug-resistant (MDR) Acinetobacter baumannii has become a serious worldwide medical problem. This study was designed to clarify the genetic and epidemiological properties of MDR A. baumannii clinical isolates. Methods: A total of 66 MDR A. baumannii isolates were obtained from 66 inpatients between May 2019 and February 2020 in a university hospital in Nepal. Whole genomes of these isolates were sequenced using next-generation sequencing. Phylogenetic trees were constructed from single nucleotide polymorphism concatemers. Multilocus sequence typing (MLST) and clonal complex (CC) analysis were conducted, and drug-resistance genes were identified. Results: Of the 66 isolates, 26 harboured a gene encoding NDM-type metallo-β-lactamase, and 55 harboured a gene encoding the 16S rRNA methyltransferase, ArmA. All isolates had point mutations in the quinolone-resistance-determining regions of gyrA and parC. Phylogenetic analysis showed that 55 isolates harboured armA, 26 harboured blaNDM-1, and14 harboured blaPER-7. Multilocus sequence typing and CC analysis revealed that 34 isolates belonged to CC2 (ST2), 10 to CC1 (nine ST1 and one ST623), and eight to CC149 (ST149). Compared to our previous study on MDR A. baumannii in Nepal in 2012, the isolation rate of CC2 increased, whereas that of CC149 decreased between 2012 and 2020. Conclusions: This study indicates that MDR A. baumannii producing carbapenemase and 16S rRNA methyltransferase, with high resistance to carbapenems and/or aminoglycosides, are spreading in medical settings in Nepal. The genetic backgrounds of MDR A. baumannii isolates have shifted to international clone 2 over several years.

Details

Language :
English
ISSN :
22137165
Volume :
38
Issue :
363-367
Database :
Directory of Open Access Journals
Journal :
Journal of Global Antimicrobial Resistance
Publication Type :
Academic Journal
Accession number :
edsdoj.f14960e4c9884349a09cb78caab4dccb
Document Type :
article
Full Text :
https://doi.org/10.1016/j.jgar.2024.07.017