Back to Search Start Over

Effect of Particle Size of Periclase on the Periclase Hydration and Expansion of Low-Heat Portland Cement Pastes

Authors :
Man Yan
Min Deng
Chen Wang
Zhiyang Chen
Source :
Advances in Materials Science and Engineering, Vol 2018 (2018)
Publication Year :
2018
Publisher :
Hindawi Limited, 2018.

Abstract

In this paper, low-heat Portland cement (LHC) clinkers were prepared by calcining raw materials at 1350°C for 2.0 hours, 1400°C for 1.0 hour, 1400°C for 1.5 hours, 1400°C for 2.0 hours, 1450°C for 1.0 hour, and 1450°C for 2.0 hours. The clinkers were ground with gypsum to produce LHC. The particle size of periclase was analysed by BSEM. Expansion of LHC pastes due to hydration of periclase was measured. The hydration degree of periclase in LHC pastes was quantitatively determined by XRD internal standard method and BSEM. The results showed that the particle size of periclase was larger when clinkers were calcined at higher temperatures or for longer time. Smaller periclase (2.60 μm) in LHC pastes tended to hydrate faster. As a result, expansion of LHC pastes develops relatively faster. Smaller particle of periclase in clinker tends to result in higher hydration degree of periclase in pastes cured at 20°C for 240 days, and there is a small amount of brucite appearing around periclase. The hydration rate of 4.00 μm periclase particle in cement paste cured at 80°C is obviously faster than that in paste cured at 20°C and 40°C. When cement paste was cured at 80°C for 7 days, the periclase was hydrated for 32.56%. The smaller size periclase (1–3 μm) had fully hydrated when the curing age was 240 days, and a large amount of brucite was produced around the larger periclase particle.

Details

Language :
English
ISSN :
16878434 and 16878442
Volume :
2018
Database :
Directory of Open Access Journals
Journal :
Advances in Materials Science and Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.f0f9990e9ad6489892b535cfa53a4f94
Document Type :
article
Full Text :
https://doi.org/10.1155/2018/1307185