Back to Search Start Over

An Intelligent Adaptive Algorithm for Environment Parameter Estimation in Smart Cities

Authors :
Mou Wu
Neal N. Xiong
Liansheng Tan
Source :
IEEE Access, Vol 6, Pp 23325-23337 (2018)
Publication Year :
2018
Publisher :
IEEE, 2018.

Abstract

Least mean squares (LMS) adaptive algorithms are attractive for distributed environment parameter estimation problems in a smart city due to the benefits of cooperation, adaptation, and rapid convergence. To obtain a reliable estimate of the network-wide parameter vector, local results can be further fused by intermediate agents in a distributed incremental way. In this paper, we propose an intelligent variable step size incremental LMS (VSS-ILMS) algorithm to solve the dilemma between fast convergence rate and low mean-square deviation (MSD) in conventional incremental LMS (ILMS) algorithms. The main idea behind our proposal is that the local step-size is adaptively updated by minimizing the MSD in every iteration, where Tikhonov regularization and time-averaging estimation methods are adopted. A theoretical analysis of proposed algorithm is presented in terms of mean square performance and mean step size in a closed form. Simulation results show that VSS-ILMS algorithm outperforms the constant step size ILMS algorithm and several classical variable step-size LMS algorithms. The derived theoretical results shows good agreement with those based on simulated data. For a practical consideration, the proposed algorithm is also verified by the model of target localization in sensor networks.

Details

Language :
English
ISSN :
21693536
Volume :
6
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.f0a716670b41be90a104ff16965d96
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2018.2810891