Back to Search
Start Over
In-Situ Synchrotron SAXS and WAXS Investigation on the Deformation of Single and Coaxial Electrospun P(VDF-TrFE)-Based Nanofibers
- Source :
- International Journal of Molecular Sciences, Vol 22, Iss 23, p 12669 (2021)
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- Coaxial core/shell electrospun nanofibers consisting of ferroelectric P(VDF-TrFE) and relaxor ferroelectric P(VDF-TrFE-CTFE) are tailor-made with hierarchical structures to modulate their mechanical properties with respect to their constituents. Compared with two single and the other coaxial membranes prepared in the research, the core/shell-TrFE/CTFE membrane shows a more prominent mechanical anisotropy between revolving direction (RD) and cross direction (CD) associated with improved resistance to tensile stress for the crystallite phase stability and good strength-ductility balance. This is due to the better degree of core/shell-TrFE-CTFE nanofiber alignment and the crystalline/amorphous ratio. The coupling between terpolymer P(VDF-TrFE-CTFE) and copolymer P(VDF-TrFE) is responsible for phase stabilization, comparing the core/shell-TrFE/CTFE with the pristine terpolymer. Moreover, an impressive collective deformation mechanism of a two-length scale in the core/shell composite structure is found. We apply in-situ synchrotron X-ray to resolve the two-length scale simultaneously by using the small-angle X-ray scattering to characterize the nanofibers and the wide-angle X-ray diffraction to identify the phase transformations. Our findings may serve as guidelines for the fabrication of the electrospun nanofibers used as membranes-based electroactive polymers.
Details
- Language :
- English
- ISSN :
- 14220067 and 16616596
- Volume :
- 22
- Issue :
- 23
- Database :
- Directory of Open Access Journals
- Journal :
- International Journal of Molecular Sciences
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.f0899cf5a3fc4511a7fa8cae103f395d
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/ijms222312669