Back to Search Start Over

A CNN Approach to Central Retinal Vein Occlusion Detection

Authors :
Jayanthi Rajee Bala
Mohamed Mansoor Roomi Sindha
Jency Sahayam
Praveena Govindharaj
Karthika Priya Rakesh
Source :
International Journal of Electronics and Telecommunications, Vol vol. 69, Iss No 3, Pp 565-570 (2023)
Publication Year :
2023
Publisher :
Polish Academy of Sciences, 2023.

Abstract

In the field of medicine there is a need for the automatic detection of retinal disorders. Blindness in older persons is primarily caused by Central Retinal Vein Occlusion (CRVO). It results in rapid, irreversible eyesight loss, therefore, it is essential to identify and address CRVO as soon as feasible. Hemorrhages, which can differ in size, pigment, and shape from dot-shaped to flame hemorrhages, are one of the earliest symptoms of CRVO. The early signs of CRVO are, hemorrhages, however, so mild that ophthalmologists must dynamically observe such indicators in the retina image known as the fundus image, which is a challenging and time-consuming task. It is also difficult to segment hemorrhages since the blood vessels and hemorrhages (HE) have the same color properties also there is no particular shape for hemorrhages and it scatters all over the fundus image. A challenging study is needed to extract the characteristics of vein deformability and dilatation. Furthermore, the quality of the captured image affects the efficacy of feature Identification analysis. In this paper, a deep learning approach for CRVO extraction is proposed.

Details

Language :
English
ISSN :
20818491 and 23001933
Volume :
. 69
Issue :
3
Database :
Directory of Open Access Journals
Journal :
International Journal of Electronics and Telecommunications
Publication Type :
Academic Journal
Accession number :
edsdoj.f07830fb9d3f414185edae20e7ea1ff2
Document Type :
article
Full Text :
https://doi.org/10.24425/ijet.2023.146508