Back to Search Start Over

Heterogeneity of synaptic connectivity in the fly visual system

Authors :
Jacqueline Cornean
Sebastian Molina-Obando
Burak Gür
Annika Bast
Giordano Ramos-Traslosheros
Jonas Chojetzki
Lena Lörsch
Maria Ioannidou
Rachita Taneja
Christopher Schnaitmann
Marion Silies
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-15 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Visual systems are homogeneous structures, where repeating columnar units retinotopically cover the visual field. Each of these columns contain many of the same neuron types that are distinguished by anatomic, genetic and – generally – by functional properties. However, there are exceptions to this rule. In the 800 columns of the Drosophila eye, there is an anatomically and genetically identifiable cell type with variable functional properties, Tm9. Since anatomical connectivity shapes functional neuronal properties, we identified the presynaptic inputs of several hundred Tm9s across both optic lobes using the full adult female fly brain (FAFB) electron microscopic dataset and FlyWire connectome. Our work shows that Tm9 has three major and many sparsely distributed inputs. This differs from the presynaptic connectivity of other Tm neurons, which have only one major, and more stereotypic inputs than Tm9. Genetic synapse labeling showed that the heterogeneous wiring exists across individuals. Together, our data argue that the visual system uses heterogeneous, distributed circuit properties to achieve robust visual processing.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.f0428a6e413346269ab07a5917e1da6c
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-45971-z