Back to Search
Start Over
Integrated transcriptomics and metabolomics analysis provides insights into aromatic volatiles formation in Cinnamomum cassia bark at different harvesting times
- Source :
- BMC Plant Biology, Vol 24, Iss 1, Pp 1-16 (2024)
- Publication Year :
- 2024
- Publisher :
- BMC, 2024.
-
Abstract
- Abstract Background Cinnamomum cassia Presl, classified in the Lauraceae family, is widely used as a spice, but also in medicine, cosmetics, and food. Aroma is an important factor affecting the medicinal and flavoring properties of C. cassia, and is mainly determined by volatile organic compounds (VOCs); however, little is known about the composition of aromatic VOCs in C. cassia and their potential molecular regulatory mechanisms. Here, integrated transcriptomic and volatile metabolomic analyses were employed to provide insights into the formation regularity of aromatic VOCs in C. cassia bark at five different harvesting times. Results The bark thickness and volatile oil content were significantly increased along with the development of the bark. A total of 724 differentially accumulated volatiles (DAVs) were identified in the bark samples, most of which were terpenoids. Venn analysis of the top 100 VOCs in each period showed that twenty-eight aromatic VOCs were significantly accumulated in different harvesting times. The most abundant VOC, cinnamaldehyde, peaked at 120 months after planting (MAP) and dominated the aroma qualities. Five terpenoids, α-copaene, β-bourbonene, α-cubebene, α-funebrene, and δ-cadinene, that peaked at 240 MAP could also be important in creating C. cassia’s characteristic aroma. A list of 43,412 differentially expressed genes (DEGs) involved in the biosynthetic pathways of aromatic VOCs were identified, including phenylpropanoids, mevalonic acid (MVA) and methylerythritol phosphate (MEP). A gene-metabolite regulatory network for terpenoid and phenylpropanoid metabolism was constructed to show the key candidate structural genes and transcription factors involved in the biosynthesis of terpenoids and phenylpropanoids. Conclusions The results of our research revealed the composition and changes of aromatic VOCs in C. cassia bark at different harvesting stages, differentiated the characteristic aroma components of cinnamon, and illuminated the molecular mechanism of aroma formation. These foundational results will provide technical guidance for the quality breeding of C. cassia.
Details
- Language :
- English
- ISSN :
- 14712229
- Volume :
- 24
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- BMC Plant Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.f0021a184c574fcf80aee3fd48678e4e
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s12870-024-04754-w