Back to Search Start Over

Nickel-catalyzed regiodivergent hydrosilylation of α-(fluoroalkyl)styrenes without defluorination

Authors :
Dachang Bai
Kangbao Zhong
Lingna Chang
Yan Qiao
Fen Wu
Guiqing Xu
Junbiao Chang
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract The fluoroalkyl-containing organic molecules are widely used in drug discovery and material science. Herein, we report ligand regulated nickel(0)-catalyzed regiodivergent hydrosilylation of α-(fluoroalkyl)styrenes without defluorination, providing an atom- and step-economical synthesis route of two types of fluoroalkyl substituted silanes with exclusive regioselectivity. The anti-Markovnikov addition products (β-fluoroalkyl substituted silanes) are formed with monodentate phosphine ligand. Noteworthy, the bidentate phosphine ligand promote the generation of the more challenging Markovnikov products (α-fluoroalkyl substituted silanes) with tetrasubstituted saturated carbon centers. This protocol features with easy available starting materials and commercially available nickel catalysis, a wide range of substrates and excellent regioselectivity. The structure divergent products undergo a variety of transformations. Comprehensive mechanistic studies including the inverse kinetic isotope effects demonstrate the regioselectivity controlled by ligand structure through α-CF3 nickel intermediate. DFT calculations reveal a distinctive mechanism involving an open-shell singlet state, which is crucial for generating intricate tetra-substituted Markovnikov products.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.bfdcf90525d40c89b522441975a0f4b
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-50743-w