Back to Search Start Over

Unpruning improvement the quality of tea through increasing the levels of amino acids and reducing contents of flavonoids and caffeine

Authors :
Ruoyu Li
Kunyi Liu
Zhengwei Liang
Hui Luo
Teng Wang
Jiangshan An
Qi Wang
Xuedan Li
Yanhui Guan
Yanqin Xiao
Caiyou Lv
Ming Zhao
Source :
Frontiers in Nutrition, Vol 9 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

Tea tree [Camellia sinensis var. sinensis or assamica (L.) O. Kuntze], an important crop worldwide, is usually pruned to heights of 70 to 80 cm, forming pruned tea tree (PTT) plantations. Currently, PTTs are transformed into unpruned tea tree (UPTT) plantations in Yunnan, China. This has improved the quality of tea products, but the underlying reasons have not been evaluated scientifically. Here, 12 samples of sun-dried green teas were manufactured using fresh leaves from an UPTT and the corresponding PTT. Using sensory evaluation, it was found that the change reduced the bitterness and astringency, while increasing sweetness and umami. Using high performance liquid chromatography detection showed that the contents of free amino acids (theanine, histidine, isoleucine and phenylalanine) and catechin gallate increased significantly (P < 0.05), whereas the content of alanine decreased significantly (P < 0.05). A liquid chromatography–mass spectrometry-based metabolomics analysis showed that the transformation to UPTT significantly decreased the relative levels of the majority of flavonols and tannins (P < 0.05), as well as γ-aminobutyric acid, caffeine and catechin (epigallocatechin, catechin, epigallocatechin gallate, gallocatechin gallate), while it significantly increased the relative contents of catechins (gallocatechin, epicatechin, epicatechin gallate and catechin gallate), phenolic acids and some amino acids (serine, oxidized glutathione, histidine, aspartic acid, glutamine, lysine, tryptophan, tyramine, pipecolic acid, and theanine) (P < 0.05). In summary, after transforming to UPTT, levels of amino acids, such as theanine increased significantly (P < 0.05), which enhanced the umami and sweetness of tea infusions, while the flavonoids (such as kaempferol, myricetin and glycosylated quercetin), and caffeine contents decreased significantly (P < 0.05), resulting in a reduction in the bitterness and astringency of tea infusions and an increase in tea quality.

Details

Language :
English
ISSN :
2296861X
Volume :
9
Database :
Directory of Open Access Journals
Journal :
Frontiers in Nutrition
Publication Type :
Academic Journal
Accession number :
edsdoj.bfb0b862545b4ae2a487351616e699e3
Document Type :
article
Full Text :
https://doi.org/10.3389/fnut.2022.1017693