Back to Search
Start Over
Precise Empirical Determination of Metallicity Dependence of Near-infrared Period–Luminosity Relations for RR Lyrae Variables
- Source :
- The Astrophysical Journal Letters, Vol 944, Iss 2, p L51 (2023)
- Publication Year :
- 2023
- Publisher :
- IOP Publishing, 2023.
-
Abstract
- RR Lyrae variables are excellent Population II distance indicators thanks to their well-defined period–luminosity relations (PLRs) at infrared wavelengths. We present results of near-infrared (NIR) monitoring of Galactic globular clusters to empirically quantify the metallicity dependence of NIR PLRs for RR Lyrae variables. Our sample includes homogeneous, accurate, and precise photometric data for 964 RR Lyrae variables in 11 globular clusters covering a large metallicity range (Δ[Fe/H] ∼ 2 dex). We derive JHK _s -band period–luminosity–metallicity (PLZ) and period–Wesenheit–metallicity (PWZ) relations anchored using 346 Milky Way field RR Lyrae stars with Gaia parallaxes, and simultaneously solved for independent distances to globular clusters. We find a significant metallicity dependence of ∼0.2 mag dex ^−1 in the JHK _s -band PLZ and PWZ relations for RR Lyrae stars independent of the adopted metallicity scale. The metallicity coefficients and the zero-points of the empirical PLZ and PWZ relations are in excellent agreement with the predictions from the horizontal branch evolution and pulsation models. Furthermore, RR Lyrae–based distances to our sample of globular clusters are also statistically consistent with other independent measurements in the literature. Our recommended empirical JHK _s -band PLZ relations for RR Lyrae stars with periods of fundamental mode pulsation ( P _f ) are: \begin{eqnarray*}\begin{array}{rcl}{M}_{J} & = & -0.44\,(\pm 0.03)-1.83\,(\pm 0.02)\mathrm{log}({P}_{{\rm{f}}})+0.20\,(\pm 0.02)\,[\mathrm{Fe}/{\rm{H}}]\,(\sigma =0.05\,\mathrm{mag})\\ {M}_{H} & = & -0.74\,(\pm 0.02)-2.29\,(\pm 0.02)\mathrm{log}({P}_{{\rm{f}}})+0.19\,(\pm 0.01)[\mathrm{Fe}/{\rm{H}}]\,(\sigma =0.05\,\mathrm{mag})\\ {M}_{{K}_{s}} & = & -0.80\,(\pm 0.02)-2.37\,(\pm 0.02)\mathrm{log}({P}_{{\rm{f}}})+0.18\,(\pm 0.01)\,[\mathrm{Fe}/{\rm{H}}]\,(\sigma =0.05\,\mathrm{mag}).\end{array}\end{eqnarray*}
Details
- Language :
- English
- ISSN :
- 20418213 and 20418205
- Volume :
- 944
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- The Astrophysical Journal Letters
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.bf576958b9f440ca45e3fe75f9babcb
- Document Type :
- article
- Full Text :
- https://doi.org/10.3847/2041-8213/acba7f