Back to Search
Start Over
On the Fourier transform of the products of M-Wright functions
- Source :
- Boletim da Sociedade Paranaense de Matemática, Vol 33, Iss 1, Pp 245-254 (2015)
- Publication Year :
- 2015
- Publisher :
- Sociedade Brasileira de Matemática, 2015.
-
Abstract
- In this note, by applying the Bromwich's integral for the inverse Mellin transform we find a new integral representation for the M-Wright function $$ M_\alpha(x)=\sum _{k=0}^{\infty }\frac{(-x)^{k} }{k!\Gamma (-\alpha k+1-\alpha )},\quad \alpha=\frac{1}{2n+1}, n\in \mathbb{N},$$ and state the Fourier transform of this function. Also, using the new integral representations for the products of the M-Wright functions, we get the Fourier transform of it.
- Subjects :
- M-Wright function
Fourier transform
Mellin transform.
Mathematics
QA1-939
Subjects
Details
- Language :
- English, Portuguese
- ISSN :
- 00378712 and 21751188
- Volume :
- 33
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Boletim da Sociedade Paranaense de Matemática
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.bee71403f9c24492aa5dd70c7968dae3
- Document Type :
- article
- Full Text :
- https://doi.org/10.5269/bspm.v33i1.22914