Back to Search Start Over

On the Fourier transform of the products of M-Wright functions

Authors :
Alireza Ansari
Source :
Boletim da Sociedade Paranaense de Matemática, Vol 33, Iss 1, Pp 245-254 (2015)
Publication Year :
2015
Publisher :
Sociedade Brasileira de Matemática, 2015.

Abstract

In this note, by applying the Bromwich's integral for the inverse Mellin transform we find a new integral representation for the M-Wright function $$ M_\alpha(x)=\sum _{k=0}^{\infty }\frac{(-x)^{k} }{k!\Gamma (-\alpha k+1-\alpha )},\quad \alpha=\frac{1}{2n+1}, n\in \mathbb{N},$$ and state the Fourier transform of this function. Also, using the new integral representations for the products of the M-Wright functions, we get the Fourier transform of it.

Details

Language :
English, Portuguese
ISSN :
00378712 and 21751188
Volume :
33
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Boletim da Sociedade Paranaense de Matemática
Publication Type :
Academic Journal
Accession number :
edsdoj.bee71403f9c24492aa5dd70c7968dae3
Document Type :
article
Full Text :
https://doi.org/10.5269/bspm.v33i1.22914