Back to Search Start Over

New Quinazolin-4(3H)-One Derivatives Incorporating Isoxazole Moiety as Antioxidant Agents: Synthesis, Structural Characterization, and Theoretical DFT Mechanistic Study

Authors :
Yassine Rhazi
Riham Sghyar
Noemi Deak
Bouchra Es-Sounni
Bouchra Rossafi
Albert Soran
Mustapha Laghmari
Azize Arzine
Asmae Nakkabi
Khalil Hammani
Samir Chtita
Mohammed M. Alanazi
Gabriela Nemes
Mohamed El. Yazidi
Source :
Pharmaceuticals, Vol 17, Iss 10, p 1390 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Background: This research centers on the development and spectroscopic characterization of new quinazolin-4(3H)-one-isoxazole derivatives (5a–e). The aim was to investigate the regioselectivity of the 1,3-dipolar cycloaddition involving arylnitriloxides and N-propargylquinazolin-4(3H)-one, and to assess the antioxidant properties of the synthesized compounds. The synthetic approach started with the alkylation of quinazolin-4(3H)-one using propargyl bromide, followed by a 1,3-dipolar cycloaddition reaction. Methods: The structural identification of the products was performed using various spectroscopic methods, such as IR, 1H, 13C, and HMBC NMR, HRMS, and single-crystal X-ray diffraction. To further examine the regioselectivity of the cycloaddition, Density Functional Theory (DFT) calculations at the B3LYP/6-31G(d) level were employed. Additionally, the antioxidant potential of the compounds was tested in vitro using DPPH (2,2-Diphenyl-1-picrylhydrazyl)radical scavenging assays. The reaction selectively produced 3,5-disubstituted isoxazoles, with the regiochemical outcome being independent of the substituents on the phenyl ring. Results: Theoretical calculations using DFT were in agreement with the experimental results, revealing activation energies of −81.15 kcal/mol for P-1 and −77.32 kcal/mol for P-2, favoring the formation of P-1. An analysis of the Intrinsic Reaction Coordinate (IRC) confirmed that the reaction proceeded via a concerted but asynchronous mechanism. The antioxidant tests demonstrated that the synthesized compounds exhibited significant radical scavenging activity, as shown in the DPPH assay. The 1,3-dipolar cycloaddition of arylnitriloxides with N-propargylquinazolin-4(3H)-one successfully resulted in novel 3,5-disubstituted isoxazoles. Conclusions: The experimental findings were well-supported by theoretical predictions, and the antioxidant assays revealed strong activity, indicating the potential for future biological applications of these compounds.

Details

Language :
English
ISSN :
14248247
Volume :
17
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Pharmaceuticals
Publication Type :
Academic Journal
Accession number :
edsdoj.be6418b079f6480bbb45c4459d2172ae
Document Type :
article
Full Text :
https://doi.org/10.3390/ph17101390