Back to Search Start Over

Bioinformatic and genetic association analysis of microRNA target sites in one-carbon metabolism genes.

Authors :
Nicole Stone
Faith Pangilinan
Anne M Molloy
Barry Shane
John M Scott
Per Magne Ueland
James L Mills
Peader N Kirke
Praveen Sethupathy
Lawrence C Brody
Source :
PLoS ONE, Vol 6, Iss 7, p e21851 (2011)
Publication Year :
2011
Publisher :
Public Library of Science (PLoS), 2011.

Abstract

One-carbon metabolism (OCM) is linked to DNA synthesis and methylation, amino acid metabolism and cell proliferation. OCM dysfunction has been associated with increased risk for various diseases, including cancer and neural tube defects. MicroRNAs (miRNAs) are ∼ 22 nt RNA regulators that have been implicated in a wide array of basic cellular processes, such as differentiation and metabolism. Accordingly, mis-regulation of miRNA expression and/or activity can underlie complex disease etiology. We examined the possibility of OCM regulation by miRNAs. Using computational miRNA target prediction methods and Monte-Carlo based statistical analyses, we identified two candidate miRNA "master regulators" (miR-22 and miR-125) and one candidate pair of "master co-regulators" (miR-344-5p/484 and miR-488) that may influence the expression of a significant number of genes involved in OCM. Interestingly, miR-22 and miR-125 are significantly up-regulated in cells grown under low-folate conditions. In a complementary analysis, we identified 15 single nucleotide polymorphisms (SNPs) that are located within predicted miRNA target sites in OCM genes. We genotyped these 15 SNPs in a population of healthy individuals (age 18-28, n = 2,506) that was previously phenotyped for various serum metabolites related to OCM. Prior to correction for multiple testing, we detected significant associations between TCblR rs9426 and methylmalonic acid (p = 0.045), total homocysteine levels (tHcy) (p = 0.033), serum B12 (p < 0.0001), holo transcobalamin (p < 0.0001) and total transcobalamin (p < 0.0001); and between MTHFR rs1537514 and red blood cell folate (p < 0.0001). However, upon further genetic analysis, we determined that in each case, a linked missense SNP is the more likely causative variant. Nonetheless, our Monte-Carlo based in silico simulations suggest that miRNAs could play an important role in the regulation of OCM.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
6
Issue :
7
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.be339f13d141470aae7feb6c928ee94b
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0021851