Back to Search
Start Over
Regularity criterion for 3D nematic liquid crystal flows in terms of finite frequency parts in B ˙ ∞ , ∞ − 1 $\dot{B}_{\infty,\infty }^{-1}$
- Source :
- Boundary Value Problems, Vol 2021, Iss 1, Pp 1-17 (2021)
- Publication Year :
- 2021
- Publisher :
- SpringerOpen, 2021.
-
Abstract
- Abstract In this paper, we establish the regularity criterion for the weak solution of nematic liquid crystal flows in three dimensions when the L ∞ ( 0 , T ; B ˙ ∞ , ∞ − 1 ) $L^{\infty }(0,T;\dot{B}_{\infty,\infty }^{-1})$ -norm of a suitable low frequency part of ( u , ∇ d ) $(u,\nabla d)$ is bounded by a scaling invariant constant and the initial data ( u 0 , ∇ d 0 ) $(u_{0},\nabla d_{0})$ . Our result refines the corresponding one in (Liu and Zhao in J. Math. Anal. Appl. 407:557-566, 2013) and that in (Ri in Nonlinear Anal. TMA 190:111619, 2020).
Details
- Language :
- English
- ISSN :
- 16872770
- Volume :
- 2021
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Boundary Value Problems
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.bde0e2526741484aaa2a08cb52c78116
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s13661-021-01500-1