Back to Search Start Over

Regularity criterion for 3D nematic liquid crystal flows in terms of finite frequency parts in B ˙ ∞ , ∞ − 1 $\dot{B}_{\infty,\infty }^{-1}$

Authors :
Xiaoli Chen
Haiyan Cheng
Source :
Boundary Value Problems, Vol 2021, Iss 1, Pp 1-17 (2021)
Publication Year :
2021
Publisher :
SpringerOpen, 2021.

Abstract

Abstract In this paper, we establish the regularity criterion for the weak solution of nematic liquid crystal flows in three dimensions when the L ∞ ( 0 , T ; B ˙ ∞ , ∞ − 1 ) $L^{\infty }(0,T;\dot{B}_{\infty,\infty }^{-1})$ -norm of a suitable low frequency part of ( u , ∇ d ) $(u,\nabla d)$ is bounded by a scaling invariant constant and the initial data ( u 0 , ∇ d 0 ) $(u_{0},\nabla d_{0})$ . Our result refines the corresponding one in (Liu and Zhao in J. Math. Anal. Appl. 407:557-566, 2013) and that in (Ri in Nonlinear Anal. TMA 190:111619, 2020).

Details

Language :
English
ISSN :
16872770
Volume :
2021
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Boundary Value Problems
Publication Type :
Academic Journal
Accession number :
edsdoj.bde0e2526741484aaa2a08cb52c78116
Document Type :
article
Full Text :
https://doi.org/10.1186/s13661-021-01500-1