Back to Search Start Over

A coordinated adaptive multiscale enhanced spatio-temporal fusion network for multi-lead electrocardiogram arrhythmia detection

Authors :
Zicong Yang
Aitong Jin
Yu Li
Xuyi Yu
Xi Xu
Junxi Wang
Qiaolin Li
Xiaoyan Guo
Yan Liu
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-19 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract The multi-lead electrocardiogram (ECG) is widely utilized in clinical diagnosis and monitoring of cardiac conditions. The advancement of deep learning has led to the emergence of automated multi-lead ECG diagnostic networks, which have become essential in the fields of biomedical engineering and clinical cardiac disease diagnosis. Intelligent ECG diagnosis techniques encompass Recurrent Neural Networks (RNN), Transformers, and Convolutional Neural Networks (CNN). While CNN is capable of extracting local spatial information from images, it lacks the ability to learn global spatial features and temporal memory features. Conversely, RNN relies on time and can retain significant sequential features. However, they are not proficient in extracting lengthy dependencies of sequence data in practical scenarios. The self-attention mechanism in the Transformer model has the capability of global feature extraction, but it does not adequately prioritize local features and cannot extract spatial and channel features. This paper proposes STFAC-ECGNet, a model that incorporates CAMV-RNN block, CBMV-CNN block, and TSEF block to enhance the performance of the model by integrating the strengths of CNN, RNN, and Transformer. The CAMV-RNN block incorporates a coordinated adaptive simplified self-attention module that adaptively carries out global sequence feature retention and enhances spatial–temporal information. The CBMV-CNN block integrates spatial and channel attentional mechanism modules in a skip connection, enabling the fusion of spatial and channel information. The TSEF block implements enhanced multi-scale fusion of image spatial and sequence temporal features. In this study, comprehensive experiments were conducted using the PTB-XL large publicly available ECG dataset and the China Physiological Signal Challenge 2018 (CPSC2018) database. The results indicate that STFAC-ECGNet surpasses other cutting-edge techniques in multiple tasks, showcasing robustness and generalization.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.bdae1f5efb0b48c097bf6057df22fee6
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-71700-z