Back to Search Start Over

Reliable Accessibility of Intermediate Polarization States in Textured Ferroelectric Al0.66Sc0.34N Thin Film

Authors :
Tae Yoon Lee
Myeong Seop Song
Jung Woo Cho
In Hyeok Choi
Chihwan An
Jong Seok Lee
Seung Chul Chae
Source :
Advanced Electronic Materials, Vol 10, Iss 2, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley-VCH, 2024.

Abstract

Abstract Ferroelectric materials are promising candidates for neuromorphic computing synaptic devices due to the nonvolatile multiplicity of spontaneous polarization. To ensure a sufficient memory window, ferroelectric materials with a large coercivity are urgently required for practical applications in highly scaled multi‐bit memory devices. Herein, a remarkable reliability of intermediate ferroelectric polarization states is demonstrated in a textured Al0.66Sc0.34N thin film with a coercive field of 2.4 MV cm−1. Al0.66Sc0.34N thin films are prepared at 300 °C on Pt (111)/Ti/SiO2/Si substrates using a radio frequency reactive sputtering method. Al0.66Sc0.34N thin films exhibit viable ferroelectricity with a large remanent polarization value of >100 µC cm−2. Through the conventional current–voltage characteristics, polarization switching kinetics, and temperature dependence of coercivity, the reproducibility of multiple polarization states with apparent accuracy is attributed to a small critical volume (3.7 × 10−28 m3) and a large activation energy (3.3 × 1027 eV m−3) for nucleation of the ferroelectric domain. This study demonstrates the potential of ferroelectric Al1‐xScxN for synaptic weight elements in neural network hardware.

Details

Language :
English
ISSN :
2199160X
Volume :
10
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Advanced Electronic Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.bd9d2aa9f194c098f71bc2bd764ba1a
Document Type :
article
Full Text :
https://doi.org/10.1002/aelm.202300591