Back to Search Start Over

High Glucose Promotes and Aggravates the Senescence and Dysfunction of Vascular Endothelial Cells in Women with Hyperglycemia in Pregnancy

Authors :
Lin Zheng
Mingqing Li
Huaping Li
Source :
Biomolecules, Vol 14, Iss 3, p 329 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Hyperglycemia in pregnancy (HIP) is linked to fetoplacental endothelial dysfunction, which might be a result of hyperglycemia. Hyperglycemia is associated with cell senescence; however, the role and mechanism of high glucose and cell senescence in HIP endothelial cell failure are largely unknown. Our study discovered that human umbilical vein endothelial cells (HUVECs) obtained from HIP pregnant women exhibit excessive senescence, with significantly elevated expression of senescence markers senescence-associated beta-galactosidase (SA-β-gal), p16, p21, and p53. Subsequently, we found that exposing primary HUVECs and cell lines to high glucose resulted in an increase in the synthesis of these senescence indicators, similar to what had been observed in pregnant women with HIP. A replicate senescence model and stress-induced premature senescence (SIPS) model showed higher amounts of vascular damage indicators, including von Willebrand factor (vWF), chemotactic C-C motif chemokine ligand 2 (CCL2), intercellular adhesion molecule 1 (ICAM-1), along with the anti-apoptotic protein BCL2. However, lower expressions of the pro-apoptotic component BAX, in addition to defective proliferation and tubulogenesis, were seen. Further studies indicated that hyperglycemia can not only induce these alterations in HUVECs but also exacerbate the aforementioned changes in both aging HUVECs. The experiments outlined above have also been validated in pregnant women with HIP. Collectively, these data suggest that exposure to high glucose accelerates cell senescence-mediated vein endothelial cell dysfunction, including excessive inflammation, cell adhesion, impaired angiogenesis, and cell proliferation possibly contributing to pregnancy complications and adverse pregnancy outcomes.

Details

Language :
English
ISSN :
2218273X
Volume :
14
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Biomolecules
Publication Type :
Academic Journal
Accession number :
edsdoj.bd5defb9d2114cb89f965cf2f3002e38
Document Type :
article
Full Text :
https://doi.org/10.3390/biom14030329