Back to Search Start Over

Rapid Identification of Escherichia coli Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry

Authors :
Adriana Calderaro
Mirko Buttrini
Benedetta Farina
Sara Montecchini
Monica Martinelli
Federica Crocamo
Maria Cristina Arcangeletti
Carlo Chezzi
Flora De Conto
Source :
Microorganisms, Vol 9, Iss 11, p 2210 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Colistin resistance is one of the major threats for global public health, requiring reliable and rapid susceptibility testing methods. The aim of this study was the evaluation of a MALDI-TOF mass spectrometry (MS) peak-based assay to distinguish colistin resistant (colR) from susceptible (colS) Escherichia coli strains. To this end, a classifying algorithm model (CAM) was developed, testing three different algorithms: Genetic Algorithm (GA), Supervised Neural Network (SNN) and Quick Classifier (QC). Among them, the SNN- and GA-based CAMs showed the best performances: recognition capability (RC) of 100% each one, and cross validation (CV) of 97.62% and 100%, respectively. Even if both algorithms shared similar RC and CV values, the SNN-based CAM was the best performing one, correctly identifying 67/71 (94.4%) of the E. coli strains collected: in point of fact, it correctly identified the greatest number of colS strains (42/43; 97.7%), despite its lower ability in identifying the colR strains (15/18; 83.3%). In conclusion, although broth microdilution remains the gold standard method for testing colistin susceptibility, the CAM represents a useful tool to rapidly screen colR and colS strains in clinical practice.

Details

Language :
English
ISSN :
20762607
Volume :
9
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Microorganisms
Publication Type :
Academic Journal
Accession number :
edsdoj.bd473dd64aa19e94ce9e316bc40e
Document Type :
article
Full Text :
https://doi.org/10.3390/microorganisms9112210