Back to Search
Start Over
Large-Scale Biomedical Relation Extraction Across Diverse Relation Types: Model Development and Usability Study on COVID-19
- Source :
- Journal of Medical Internet Research, Vol 25, p e48115 (2023)
- Publication Year :
- 2023
- Publisher :
- JMIR Publications, 2023.
-
Abstract
- BackgroundBiomedical relation extraction (RE) is of great importance for researchers to conduct systematic biomedical studies. It not only helps knowledge mining, such as knowledge graphs and novel knowledge discovery, but also promotes translational applications, such as clinical diagnosis, decision-making, and precision medicine. However, the relations between biomedical entities are complex and diverse, and comprehensive biomedical RE is not yet well established. ObjectiveWe aimed to investigate and improve large-scale RE with diverse relation types and conduct usability studies with application scenarios to optimize biomedical text mining. MethodsData sets containing 125 relation types with different entity semantic levels were constructed to evaluate the impact of entity semantic information on RE, and performance analysis was conducted on different model architectures and domain models. This study also proposed a continued pretraining strategy and integrated models with scripts into a tool. Furthermore, this study applied RE to the COVID-19 corpus with article topics and application scenarios of clinical interest to assess and demonstrate its biological interpretability and usability. ResultsThe performance analysis revealed that RE achieves the best performance when the detailed semantic type is provided. For a single model, PubMedBERT with continued pretraining performed the best, with an F1-score of 0.8998. Usability studies on COVID-19 demonstrated the interpretability and usability of RE, and a relation graph database was constructed, which was used to reveal existing and novel drug paths with edge explanations. The models (including pretrained and fine-tuned models), integrated tool (Docker), and generated data (including the COVID-19 relation graph database and drug paths) have been made publicly available to the biomedical text mining community and clinical researchers. ConclusionsThis study provided a comprehensive analysis of RE with diverse relation types. Optimized RE models and tools for diverse relation types were developed, which can be widely used in biomedical text mining. Our usability studies provided a proof-of-concept demonstration of how large-scale RE can be leveraged to facilitate novel research.
Details
- Language :
- English
- ISSN :
- 14388871
- Volume :
- 25
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Medical Internet Research
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.bd0c864f33e04784843653bfc18cefa6
- Document Type :
- article
- Full Text :
- https://doi.org/10.2196/48115