Back to Search Start Over

Anomaly Detection with Feature Extraction Based on Machine Learning Using Hydraulic System IoT Sensor Data

Authors :
Doyun Kim
Tae-Young Heo
Source :
Sensors, Vol 22, Iss 7, p 2479 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Hydraulic systems are advanced in function and level as they are used in various industrial fields. Furthermore, condition monitoring using internet of things (IoT) sensors is applied for system maintenance and management. In this study, meaningful features were identified through extraction and selection of various features, and classification evaluation metrics were presented through machine learning and deep learning to expand the diagnosis of abnormalities and defects in each component of the hydraulic system. Data collected from IoT sensor data in the time domain were divided into clusters in predefined sections. The shape and density characteristics were extracted by cluster. Among 2335 newly extracted features, related features were selected using correlation coefficients and the Boruta algorithm for each hydraulic component and used for model learning. Linear discriminant analysis (LDA), logistic regression, support vector classifier (SVC), decision tree, random forest, XGBoost, LightGBM, and multi-layer perceptron were used to calculate the true positive rate (TPR) and true negative rate (TNR) for each hydraulic component to detect normal and abnormal conditions. Valve condition, internal pump leakage, and hydraulic accumulator data showed TPR performance of 0.94 or more and a TNR performance of 0.84 or more. This study’s findings can help to determine the stable and unstable states of each component of the hydraulic system and form the basis for engineers’ judgment.

Details

Language :
English
ISSN :
14248220
Volume :
22
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.bd0aa3dc88904fbf96ec06d066414386
Document Type :
article
Full Text :
https://doi.org/10.3390/s22072479