Back to Search Start Over

Uncertainty assessment in 3-D geological models of increasing complexity

Authors :
D. Schweizer
P. Blum
C. Butscher
Source :
Solid Earth, Vol 8, Iss 2, Pp 515-530 (2017)
Publication Year :
2017
Publisher :
Copernicus Publications, 2017.

Abstract

The quality of a 3-D geological model strongly depends on the type of integrated geological data, their interpretation and associated uncertainties. In order to improve an existing geological model and effectively plan further site investigation, it is of paramount importance to identify existing uncertainties within the model space. Information entropy, a voxel-based measure, provides a method for assessing structural uncertainties, comparing multiple model interpretations and tracking changes across consecutively built models. The aim of this study is to evaluate the effect of data integration (i.e., update of an existing model through successive addition of different types of geological data) on model uncertainty, model geometry and overall structural understanding. Several geological 3-D models of increasing complexity, incorporating different input data categories, were built for the study site Staufen (Germany). We applied the concept of information entropy in order to visualize and quantify changes in uncertainty between these models. Furthermore, we propose two measures, the Jaccard and the city-block distance, to directly compare dissimilarities between the models. The study shows that different types of geological data have disparate effects on model uncertainty and model geometry. The presented approach using both information entropy and distance measures can be a major help in the optimization of 3-D geological models.

Details

Language :
English
ISSN :
18699510 and 18699529
Volume :
8
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Solid Earth
Publication Type :
Academic Journal
Accession number :
edsdoj.bc61f4aec4f4808a4f0d33fbf53c725
Document Type :
article
Full Text :
https://doi.org/10.5194/se-8-515-2017