Back to Search Start Over

The nonantibiotic small molecule cyslabdan enhances the potency of β-lactams against MRSA by inhibiting pentaglycine interpeptide bridge synthesis.

Authors :
Nobuhiro Koyama
Yuriko Tokura
Daniela Münch
Hans-Georg Sahl
Tanja Schneider
Yoshio Shibagaki
Haruo Ikeda
Hiroshi Tomoda
Source :
PLoS ONE, Vol 7, Iss 11, p e48981 (2012)
Publication Year :
2012
Publisher :
Public Library of Science (PLoS), 2012.

Abstract

The nonantibiotic small molecule cyslabdan, a labdan-type diterpene produced by Streptomyces sp. K04-0144, markedly potentiated the activity of the β-lactam drug imipenem against methicillin-resistant Staphylococcus aureus (MRSA). To study the mechanism of action of cyslabdan, the proteins that bind to cyslabdan were investigated in an MRSA lysate, which led to the identification of FemA, which is involved in the synthesis of the pentaglycine interpeptide bridge of the peptidoglycan of MRSA. Furthermore, binding assay of cyslabdan to FemB and FemX with the function similar to FemA revealed that cyslabdan had an affinity for FemB but not FemX. In an enzyme-based assay, cyslabdan inhibited FemA activity, where as did not affected FemX and FemB activities. Nonglycyl and monoglycyl murein monomers were accumulated by cyslabdan in the peptidoglycan of MRSA cell walls. These findings indicated that cyslabdan primarily inhibits FemA, thereby suppressing pentaglycine interpeptide bridge synthesis. This protein is a key factor in the determination of β-lactam resistance in MRSA, and our findings provide a new strategy for combating MRSA.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
7
Issue :
11
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.bc5b694a35a3411e8e187fa0a4973dd3
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0048981