Back to Search Start Over

Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice

Authors :
Jing Zhang
Chunbo Yu
Xuan Zhang
Huiwen Chen
Jiachen Dong
Weili Lu
Zhongchen Song
Wei Zhou
Source :
Journal of Neuroinflammation, Vol 15, Iss 1, Pp 1-14 (2018)
Publication Year :
2018
Publisher :
BMC, 2018.

Abstract

Abstract Background Porphyromonas gingivalis lipopolysaccharide (P. gingivalis-LPS) is one of the major pathogenic factors of chronic periodontitis (CP). Few reports on the correlation between P. gingivalis-LPS and cognitive function exist. Thus, the present study aimed to investigate the effects of P. gingivalis-LPS on cognitive function and the associated underlying mechanism in C57BL/6 mice. Methods The C57BL/6 mice were injected with P. gingivalis-LPS (5 mg kg−1) either with or without Toll-like receptor 4 (TLR4) inhibitor (TAK-242, 5 mg kg−1). After 7 days, behavioral alterations were assessed with the open field test (OFT), Morris water maze (MWM) test, and passive avoidance test (PAT). The activation of astrocytes and microglia in the cerebral cortex and hippocampus of mice was observed by immunohistochemistry. The expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8), TLRs (TLR2, TLR3, and TLR4), and CD14 and the activation of the NF-κB signaling pathway (IRAK1, p65, and p-p65) in the cerebral cortex of the mice were evaluated by RT-PCR, ELISA, and western blot. Results The OFT showed that P. gingivalis-LPS did not affect the initiative and activity of mice. Administration of P. gingivalis-LPS significantly impaired spatial learning and memory during the MWM test and attenuated the ability of passive avoidance learning during the PAT. Both astrocytes and microglia were activated in the cortex and hippocampus. The messenger RNA (mRNA) and protein expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) was upregulated by P. gingivalis-LPS in the cortex. In addition, the TLR4/NF-κB signaling pathway was activated (TLR4, CD14, IRAK1, and p-p65). These effects were effectively alleviated by TAK-242. Conclusions Administration of P. gingivalis-LPS can lead to learning and memory impairment in C57BL/6 mice. This impairment is mediated by activation of the TLR4 signaling pathway. Our study suggests that P. gingivalis-LPS-induced neuroinflammation plays an important role in cognitive impairment. It also reveals that endotoxins of periodontal pathogens could represent a risk factor for cognitive disorders.

Details

Language :
English
ISSN :
17422094
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Neuroinflammation
Publication Type :
Academic Journal
Accession number :
edsdoj.bc21e49031044760ae4eddd3d010f16d
Document Type :
article
Full Text :
https://doi.org/10.1186/s12974-017-1052-x