Back to Search Start Over

When the Whole Is Less Than the Sum of Its Parts: Maximum Object Category Information and Behavioral Prediction in Multiscale Activation Patterns

Authors :
Hamid Karimi-Rouzbahani
Alexandra Woolgar
Source :
Frontiers in Neuroscience, Vol 16 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

Neural codes are reflected in complex neural activation patterns. Conventional electroencephalography (EEG) decoding analyses summarize activations by averaging/down-sampling signals within the analysis window. This diminishes informative fine-grained patterns. While previous studies have proposed distinct statistical features capable of capturing variability-dependent neural codes, it has been suggested that the brain could use a combination of encoding protocols not reflected in any one mathematical feature alone. To check, we combined 30 features using state-of-the-art supervised and unsupervised feature selection procedures (n = 17). Across three datasets, we compared decoding of visual object category between these 17 sets of combined features, and between combined and individual features. Object category could be robustly decoded using the combined features from all of the 17 algorithms. However, the combination of features, which were equalized in dimension to the individual features, were outperformed across most of the time points by the multiscale feature of Wavelet coefficients. Moreover, the Wavelet coefficients also explained the behavioral performance more accurately than the combined features. These results suggest that a single but multiscale encoding protocol may capture the EEG neural codes better than any combination of protocols. Our findings put new constraints on the models of neural information encoding in EEG.

Details

Language :
English
ISSN :
1662453X
Volume :
16
Database :
Directory of Open Access Journals
Journal :
Frontiers in Neuroscience
Publication Type :
Academic Journal
Accession number :
edsdoj.bc08bfe1e8bc46b7b8772c523f5671a6
Document Type :
article
Full Text :
https://doi.org/10.3389/fnins.2022.825746