Back to Search Start Over

Dysregulation of miR-342-3p in plasma exosomes derived from convalescent AMI patients and its consequences on cardiac repair

Authors :
Bo Wang
Chang Cao
Dongjian Han
Jing Bai
Jiacheng Guo
Qianqian Guo
Demin Li
Jianchao Zhang
Zenglei Zhang
Yunzhe Wang
Junnan Tang
Deliang Shen
Jinying Zhang
Source :
Biomedicine & Pharmacotherapy, Vol 142, Iss , Pp 112056- (2021)
Publication Year :
2021
Publisher :
Elsevier, 2021.

Abstract

Plasma exosomes derived from healthy people have been shown to be beneficial in terms of protecting against ischemia-reperfusion injury or acute myocardial infarction (AMI). However, a pathological condition may severely affect the constitution and biological activity of exosomes. In our study, we isolated plasma exosomes from healthy volunteers and convalescent AMI patients (3–7 d after onset). Compared to exosomes from healthy controls (Nor-Exo), exosomes from convalescent AMI patients (AMI-Exo) exhibited an impaired ability to repair damaged cardiomyocytes both in vitro and in vivo. miRNA sequencing and PCR analysis indicated that miR-342-3p was significantly downregulated in AMI-Exo. Moreover, miR-342-3p alleviated H2O2-induced injury and reduced apoptosis and autophagy in H9c2 cardiomyocytes, while in vivo restoration of miR-342-3p expression enhanced the reparative function of AMI-Exo. Further mechanistic studies revealed that the SOX6 and TFEB genes were two direct and functional targets of miR-342-3p. Taken together, during the early convalescent phase after AMI, dysregulated miR-342-3p in plasma exosomes might be responsible for their impaired cardioprotective potential. miR-342-3p contributed to exosome-mediated heart repair by inhibiting cardiomyocyte apoptosis and autophagy through targeting SOX6 and TFEB, respectively. Our work provided novel insights on the role of plasma exosomes in the natural process of cardiac repair after AMI and suggestions for therapy development.

Details

Language :
English
ISSN :
07533322
Volume :
142
Issue :
112056-
Database :
Directory of Open Access Journals
Journal :
Biomedicine & Pharmacotherapy
Publication Type :
Academic Journal
Accession number :
edsdoj.bc013e2b59714e73a9f090d01543e9b7
Document Type :
article
Full Text :
https://doi.org/10.1016/j.biopha.2021.112056