Back to Search
Start Over
Measuring magic on a quantum processor
- Source :
- npj Quantum Information, Vol 8, Iss 1, Pp 1-8 (2022)
- Publication Year :
- 2022
- Publisher :
- Nature Portfolio, 2022.
-
Abstract
- Abstract Magic states are the resource that allows quantum computers to attain an advantage over classical computers. This resource consists in the deviation from a property called stabilizerness which in turn implies that stabilizer circuits can be efficiently simulated on a classical computer. Without magic, no quantum computer can do anything that a classical computer cannot do. Given the importance of magic for quantum computation, it would be useful to have a method for measuring the amount of magic in a quantum state. In this work, we propose and experimentally demonstrate a protocol for measuring magic based on randomized measurements. Our experiments are carried out on two IBM Quantum Falcon processors. This protocol can provide a characterization of the effectiveness of a quantum hardware in producing states that cannot be effectively simulated on a classical computer. We show how from these measurements one can construct realistic noise models affecting the hardware.
- Subjects :
- Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
Subjects
Details
- Language :
- English
- ISSN :
- 20566387
- Volume :
- 8
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- npj Quantum Information
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.bb93daa25a5848d7bd64f7b936bbdce6
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41534-022-00666-5