Back to Search Start Over

Development and assessment of novel machine learning models to predict medication non-adherence risks in type 2 diabetics

Authors :
Mengting Li
Xiangyu Lu
HengBo Yang
Rong Yuan
Yong Yang
Rongsheng Tong
Xingwei Wu
Source :
Frontiers in Public Health, Vol 10 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

BackgroundMedication adherence is the main determinant of effective management of type 2 diabetes, yet there is no gold standard method available to screen patients with high-risk non-adherence. Developing machine learning models to predict high-risk non-adherence in patients with T2D could optimize management.MethodsThis cross-sectional study was carried out on patients with T2D at the Sichuan Provincial People's Hospital from April 2018 to December 2019 who were examined for HbA1c on the day of the survey. Demographic and clinical characteristics were extracted from the questionnaire and electronic medical records. The sample was randomly divided into a training dataset and a test dataset with a radio of 8:2 after data preprocessing. Four imputing methods, five sampling methods, three screening methods, and 18 machine learning algorithms were used to groom data and develop and validate models. Bootstrapping was performed to generate the validation set for external validation and univariate analysis. Models were compared on the basis of predictive performance metrics. Finally, we validated the sample size on the best model.ResultsThis study included 980 patients with T2D, of whom 184 (18.8%) were defined as medication non-adherence. The results indicated that the model used modified random forest as the imputation method, random under sampler as the sampling method, Boruta as the feature screening method and the ensemble algorithms and had the best performance. The area under the receiver operating characteristic curve (AUC), F1 score, and area under the precision-recall curve (AUPRC) of the best model, among a total of 1,080 trained models, were 0.8369, 0.7912, and 0.9574, respectively. Age, present fasting blood glucose (FBG) values, present HbA1c values, present random blood glucose (RBG) values, and body mass index (BMI) were the most significant contributors associated with risks of medication adherence.ConclusionWe found that machine learning methods could be used to predict the risk of non-adherence in patients with T2D. The proposed model was well performed to identify patients with T2D with non-adherence and could help improve individualized T2D management.

Details

Language :
English
ISSN :
22962565
Volume :
10
Database :
Directory of Open Access Journals
Journal :
Frontiers in Public Health
Publication Type :
Academic Journal
Accession number :
edsdoj.bb6d3dda7d3a4b658d58510c1b81fe39
Document Type :
article
Full Text :
https://doi.org/10.3389/fpubh.2022.1000622