Back to Search Start Over

Green synthesized silver and copper nanoparticles induced changes in biomass parameters, secondary metabolites production, and antioxidant activity in callus cultures of Artemisia absinthium L.

Authors :
Hayat Khizar
Ali Shahid
Ullah Saif
Fu Yujie
Hussain Mubashir
Source :
Green Processing and Synthesis, Vol 10, Iss 1, Pp 61-72 (2021)
Publication Year :
2021
Publisher :
De Gruyter, 2021.

Abstract

Artemisia absinthium L. is a highly medicinal plant with a broad range of biomedical applications. A. absinthium callus cultures were established in response to bio-fabricated single NPs (Ag and Cu) or a combination of both NPs (Ag and Cu) in different ratios (1:2, 2:1, 1:3, and 3:1) along with thidiazuron (TDZ) (4 mg/L) to elicit the biomass accumulation, production of non-enzymatic compounds, antioxidative enzymes, and antioxidant activity. Silver and copper nanoparticles (Ag and Cu NPs) were synthesized using the leaves of Moringa oleifera as reducing and capping agent and further characterized through UV-Visible spectroscopy and SEM. The 30 µg/L suspension of Ag and Cu NPs (1:2, 2:1) and 4 mg/L TDZ showed 100% biomass accumulation as compared to control (86%). TDZ in combination with Ag NPs enhanced biomass in the log phases of growth kinetics. The Cu NPs alone enhanced the superoxide dismutase activity (0.56 nM/min/mg FW) and peroxidase activity (0.31 nM/min/mg FW) in callus cultures. However, the combination of Ag and Cu NPs with TDZ induced significant total phenolic (7.31 µg/g DW) and flavonoid contents (9.27 µg/g DW). Furthermore, the antioxidant activity was highest (86%) in the Ag and Cu NPs (3:1) augmented media. The present study provides the first evidence of bio-fabricated single NPs (Ag and Cu) or a combination of both NPs (Ag and Cu) in different ratios (1:2, 2:1, 1:3, and 3:1) along with TDZ (4 mg/L) on the development of callus culture, production of endogenous enzymes, non-enzymatic components, and further antioxidant activity in callus cultures of A. absinthium.

Details

Language :
English
ISSN :
21919550
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Green Processing and Synthesis
Publication Type :
Academic Journal
Accession number :
edsdoj.bb552d4514c045b8a62ed7cf5ed94faf
Document Type :
article
Full Text :
https://doi.org/10.1515/gps-2021-0010