Back to Search
Start Over
Green synthesized silver and copper nanoparticles induced changes in biomass parameters, secondary metabolites production, and antioxidant activity in callus cultures of Artemisia absinthium L.
- Source :
- Green Processing and Synthesis, Vol 10, Iss 1, Pp 61-72 (2021)
- Publication Year :
- 2021
- Publisher :
- De Gruyter, 2021.
-
Abstract
- Artemisia absinthium L. is a highly medicinal plant with a broad range of biomedical applications. A. absinthium callus cultures were established in response to bio-fabricated single NPs (Ag and Cu) or a combination of both NPs (Ag and Cu) in different ratios (1:2, 2:1, 1:3, and 3:1) along with thidiazuron (TDZ) (4 mg/L) to elicit the biomass accumulation, production of non-enzymatic compounds, antioxidative enzymes, and antioxidant activity. Silver and copper nanoparticles (Ag and Cu NPs) were synthesized using the leaves of Moringa oleifera as reducing and capping agent and further characterized through UV-Visible spectroscopy and SEM. The 30 µg/L suspension of Ag and Cu NPs (1:2, 2:1) and 4 mg/L TDZ showed 100% biomass accumulation as compared to control (86%). TDZ in combination with Ag NPs enhanced biomass in the log phases of growth kinetics. The Cu NPs alone enhanced the superoxide dismutase activity (0.56 nM/min/mg FW) and peroxidase activity (0.31 nM/min/mg FW) in callus cultures. However, the combination of Ag and Cu NPs with TDZ induced significant total phenolic (7.31 µg/g DW) and flavonoid contents (9.27 µg/g DW). Furthermore, the antioxidant activity was highest (86%) in the Ag and Cu NPs (3:1) augmented media. The present study provides the first evidence of bio-fabricated single NPs (Ag and Cu) or a combination of both NPs (Ag and Cu) in different ratios (1:2, 2:1, 1:3, and 3:1) along with TDZ (4 mg/L) on the development of callus culture, production of endogenous enzymes, non-enzymatic components, and further antioxidant activity in callus cultures of A. absinthium.
Details
- Language :
- English
- ISSN :
- 21919550
- Volume :
- 10
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Green Processing and Synthesis
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.bb552d4514c045b8a62ed7cf5ed94faf
- Document Type :
- article
- Full Text :
- https://doi.org/10.1515/gps-2021-0010