Back to Search Start Over

Bi-terminal fusion of intrinsically-disordered mussel foot protein fragments boosts mechanical strength for protein fibers

Authors :
Jingyao Li
Bojing Jiang
Xinyuan Chang
Han Yu
Yichao Han
Fuzhong Zhang
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-12 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Microbially-synthesized protein-based materials are attractive replacements for petroleum-derived synthetic polymers. However, the high molecular weight, high repetitiveness, and highly-biased amino acid composition of high-performance protein-based materials have restricted their production and widespread use. Here we present a general strategy for enhancing both strength and toughness of low-molecular-weight protein-based materials by fusing intrinsically-disordered mussel foot protein fragments to their termini, thereby promoting end-to-end protein-protein interactions. We demonstrate that fibers of a ~60 kDa bi-terminally fused amyloid-silk protein exhibit ultimate tensile strength up to 481 ± 31 MPa and toughness of 179 ± 39 MJ*m−3, while achieving a high titer of 8.0 ± 0.70 g/L by bioreactor production. We show that bi-terminal fusion of Mfp5 fragments significantly enhances the alignment of β-nanocrystals, and intermolecular interactions are promoted by cation-π and π-π interactions between terminal fragments. Our approach highlights the advantage of self-interacting intrinsically-disordered proteins in enhancing material mechanical properties and can be applied to a wide range of protein-based materials.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.bb4d7976d9384fb991da2ec5a8e091b9
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-37563-0