Back to Search Start Over

Development and validation of a machine learning-based model to assess probability of systemic inflammatory response syndrome in patients with severe multiple traumas

Authors :
Alexander Prokazyuk
Aidos Tlemissov
Marat Zhanaspayev
Sabina Aubakirova
Arman Mussabekov
Source :
BMC Medical Informatics and Decision Making, Vol 24, Iss 1, Pp 1-14 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Systemic inflammatory response syndrome (SIRS) is a predictor of serious infectious complications, organ failure, and death in patients with severe polytrauma and is one of the reasons for delaying early total surgical treatment. To determine the risk of SIRS within 24 h after hospitalization, we developed six machine learning models. Materials and methods Using retrospective data about the patient, the nature of the injury, the results of general and standard biochemical blood tests, and coagulation tests, six models were developed: decision tree, random forest, logistic regression, support vector and gradient boosting classifiers, logistic regressor, and neural network. The effectiveness of the models was assessed through internal and external validation. Results Among the 439 selected patients with severe polytrauma in 230 (52.4%), SIRS was diagnosed within the first 24 h of hospitalization. The SIRS group was more strongly associated with class II bleeding (39.5% vs. 60.5%; OR 1.81 [95% CI: 1.23–2.65]; P = 0.0023), long-term vasopressor use (68.4% vs. 31.6%; OR 5.51 [95% CI: 2.37–5.23]; P

Details

Language :
English
ISSN :
14726947
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Medical Informatics and Decision Making
Publication Type :
Academic Journal
Accession number :
edsdoj.bb22c1cf3d44965a8e5af1630347994
Document Type :
article
Full Text :
https://doi.org/10.1186/s12911-024-02640-x