Back to Search
Start Over
Vegetation Greening and Climate Warming Increased the Propagation Risk From Meteorological Drought to Soil Drought at Subseasonal Timescales
- Source :
- Geophysical Research Letters, Vol 51, Iss 4, Pp n/a-n/a (2024)
- Publication Year :
- 2024
- Publisher :
- Wiley, 2024.
-
Abstract
- Abstract Subseasonal droughts including flash droughts have occurred frequently in recent years, which are accompanied by heatwaves or wildfires that raise a wide concern on environmental risk. However, the changing characteristics of subseasonal drought propagation, and the possible climate and environmental drivers remain unknown. This study quantifies the propagation characteristics from meteorological drought to soil drought using a Copula‐based Bayesian framework, and shows that higher propagation risks mainly occur in more humid regions with denser vegetation cover. Trends in drought propagation risk vary regionally, with a global increase of 2%/decade (p 71% of the global vegetated lands, with mean contribution rates of 39.5% and 36.5% respectively. Other climatic factors including vapor pressure deficit and precipitation also paly critical roles, which closely correlate with temperature and vegetation. These findings highlight the importance of vegetation greening on subseasonal drought propagation dynamics.
Details
- Language :
- English
- ISSN :
- 19448007 and 00948276
- Volume :
- 51
- Issue :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- Geophysical Research Letters
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.bacf2288cf2849728a5124d0cef69f62
- Document Type :
- article
- Full Text :
- https://doi.org/10.1029/2023GL107937